Offbeat

Researchers develop new method to detect light in brain

Washington D.C. [USA]: Researchers have developed a new light-based method to capture and pinpoint the epicentre of neural activity in the brain. 

The approach, described in the journal Nature Methods, lays the foundation for novel ways to map connections across different brain regions—an ability that can enable the design of devices to image various areas of the brain and even treat conditions that arise from malfunctions in cells inhabiting these regions, the researchers said. 

The work was led by Ferruccio Pisanello at IIT, Massimo De Vittorio at IIT and University of Salento, and Bernardo Sabatini, the Alice and Rodman W. Moorhead III Professor of Neurobiology in the Blavantik Institute at Harvard Medical School, and funded by the European Research Council and by the National Institutes of Health in the United States. 

One of the central challenges in modern neuroscience is recording the exchange of information between different regions of the brain, as well as between different cell types. The new method overcomes this challenge by allowing the simultaneous collection of signals from various brain regions through the use of a tapered optical probe. 

The study marks the first instance of successfully using light to decode the activity of specific neuronal populations as well as manipulation of different brain regions with the use of a single probe. 

The approach relies on bringing fluorescent molecules into specific nerve cells in order to track their electric activity and to measure the level of neurotransmitters—molecules that act as chemical messengers across neurons. To achieve this, the team used an optical fibre in the shape of a narrow cone with a tip so thin and so precise that it is capable of capturing light from single neurons along regions as long as 2 millimetres (0.07 inches). 

The researchers inserted the light-sensing probe inside the striatum, a region of the brain involved in planning movements, and used it to track the release of dopamine, a critical neurotransmitter involved in motor control which also plays a key role in the development of disorders like Parkinson's disease, schizophrenia and depression. 

The device successfully captured neural activity in specific sub-regions of the striatum involved in the release of dopamine during specific behaviours.

The approach has effectively allowed scientists to capture how nerve signals travel in time and space and to gauge the concentration of specific neurotransmitters during specific actions. 

The method enriches researchers' methodological repertoire and augments their ability to study the central nervous system and probe the molecular causes of neurological disorders.

AI helps researchers up-cycle waste carbon

Washington D.C.: In a breakthrough study, researchers are using artificial intelligence (AI) to accelerate progress in transforming waste carbon into ...

Sea level could rise more than 1 metre by 2100 if emission targets not met

Potsdam [Germany]: Global mean sea-level rise could exceed 1 metre by 2100 and 5 metres by 2300 with unchecked emissions, a survey among 100 leading i...

Soaps or sanitisers? What fights coronavirus better

Washington D.C.: In the midst of the COVID-19 crisis, health-specialists have been emphasising upon the importance of keeping your hands germ-free, ei...

Staying hygienic cuts down the use of antibiotics: study

Washington DC [USA]: Improving hygiene practices like washing hands reduces the risk of catching infections by 50 percent and cuts the use of antibiot...